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Hybrid Dyadic-Mixed-Potential and Combined
Spectral-Space Domain Integral-Equation

Analysis of Quasi-3-D Structures
in Stratified Media

Mark Vrancken, Member, IEEE, and Guy A. E. Vandenbosch, Member, IEEE

Abstract—Planar circuits and antennas in stratified media are
efficiently analyzed using an integral-equation formulation with a
spectral-domain approach to construct the required Green’s func-
tions. This efficiency is largely lost when arbitrary three-dimen-
sional (3-D) structures have to be analyzed. We, therefore, focus at-
tention to “quasi 3-D” structures, which, although not fully 3-D, are
still seen to cover most practical problems. The formulation of the
electric field is adapted to the geometry as a hybrid dyadic-mixed-
potential form. Evaluation of all -dependent parts of the reac-
tion integrals is done analytically in the spectral domain. The re-
maining evaluation is done in the space domain with a mixed-po-
tential formalism. We obtain a combined spectral-space domain
approach to solve the integral equation. Numerical results demon-
strate the applicability of the method to (most) 3-D problems that
occur in planar stratified media.

Index Terms—Dyadic, integral equation (IE), mixed potential,
stratified medium, three-dimensional (3-D) planar.

I. INTRODUCTION

I N THE full-wave analysis of planar circuits, antennas,
and interconnections in planar multilayered media, inte-

gral-equation (IE) formulations have shown higher efficiency
than differential equation based methods like the finite-differ-
ence time-domain (FDTD) method [1], or finite-element method
(FEM) [2]. For an IE analysis of planar structures in stratified
media, a large amount of analytical work can be done by using
a spectral-domain approach (SDA) [3], [4] for constructing the
requiredGreen’s functions. IEs in stratified mediaare formulated
as electric field integral equations (EFIEs) with a dyadic Green’s
function or as mixed potential integral equations (MPIEs) with
scalar and vector potential Green’s functions. Reaction integrals
[5] for the method of moments (MoM) [6] solution of the IE
can be evaluated in the spectral or space domain. The IE/SDA
technique has been applied for more complicated geometries,
from two-and-one-half-dimensional (2.5-D) structures [7]–[10]
to almost fully three-dimensional (3-D) [11]–[14] and complete
3-D structures [15]. Terminology to clearly specify the geometry
is given in Section I-A. Either the EFIE [7] or standard available
MPIE [11], [13] formulations have been used. In this paper,
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Fig. 1. Familiar 2-D or planar structure.

we propose a hybrid dyadic-mixed-potential field formulation
(Section II) specifically adapted to analyze “quasi 3-D” ge-
ometries. We also propose a combined spectral–space-domain
evaluation of the reaction integrals (Section III). This method
extends earlier more limited approaches revised in Section I-B.
The dyadic -dependent parts of all reaction integrals are
performed analytically (see Section IV) and evaluated in the
spectral domain. After the numerical inverse Fourier transform,
the remaining integrals in the transverse coordinates are done
with the space-domain MPIE formalism. The evaluation of the
reaction integrals and inverse Fourier transform is interleaved
depending on the type of coupling. Thus, we combine space- and
spectral-domain techniques to deal with the singular behavior of
the Green’s functions. Section IV shows how the closed-form
integrations are done using a factorization (Section IV-B) and
general derivative relations (Section IV-B), valid for Green’s
functions in an arbitrary stratified medium. The numerical results
of Section V demonstrate the validity of the proposed techniques
for most practical problems that one first thinks of as fully 3-D.

A. Field Formulations for Two-Dimensional (2-D) to
3-D Problems

Fig. 1 shows the 2-D or planar case. Metal surfaces are strictly
horizontal and located at a limited number of discrete -posi-
tions. Theoretically, the field can be cast into MPIE form, as in
[16]. Fig. 2 depicts the 2.5-D or “3-D planar” case. A limited
capability to model vertical currents is incorporated to analyze
probe feeds for patch antennas [17] and via’s and air bridges
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Fig. 2. 2.5-D or 3-D planar structure. Vertical currents are constant and
confined to a single dielectric layer.

[10], [11] in planar circuits. Due to the small dimensions, trans-
verse current components on the vertical conductors can be ne-
glected and the remaining -component can be assumed con-
stant, as in [7], [9], and [10]. The current cannot cross the in-
terface between adjacent dielectric layers. The -component of
the current was introduced into MPIE formulations, as in [17],
or added in EFIE form, as in [10]. Several commercial soft-
ware packages can analyze 2.5-D geometries.1 2 3 4 Fig. 3 de-
picts a full 3-D problem [15]. Due to the larger dimensions, the
current can no longer be assumed constant and it can have ar-
bitrary orientation at all positions in the layer structure. It can
cross the interfaces between adjacent layers. For this case, the-
oretical difficulties have been experienced in formulating the
MPIE: one is confronted with multiple scalar potential kernels
[18], [19] or a dyadic vector potential kernel [15]. In the last
case, higher order Sommerfeld integrals (see Appendix A)
complicate the numerical inverse Fourier transform, and a de-
pendence on the azimuth angle
strongly complicates the evaluation of the reaction integrals in
the space domain [8], [9]. Some commercial software packages
offer full 3-D capability.5 6 Fig. 4 depicts the quasi-3-D geom-
etry we will concentrate on. Vertical surfaces can be arbitrarily
large and can cross dielectric interfaces. The current flowing on
the surface is decomposed into vertical and horizontal compo-
nents. This is not a full 3-D problem since the vertical surface
and the current on it cannot have arbitrary inclination unless a
staircase approximation is made (not provided in the examples).
This geometry was already treated in [12]–[14], but using a total

1Sonnet em Suite, 3D Planar High Frequency Electromagnetic Simulation,
Sonnet Software Inc., Syracuse, NY. [Online]. Available: http://www.son-
netusa.com

2Microwave Office 2000, Applied Wave Research Inc., El Segundo, CA. [On-
line]. Available: http://www.mwoffice.com

3Momentum Planar Electromagnetic Simulator, Agilent Technol. EEsof
EDA, Agilent Technol., Palo Alto, CA. [Online]. Available: http://www.agi-
lent.com

4Ansoft Ensemble, Planar EM Simulation Software for RF and Wireless De-
sign, Ansoft Corporation, Pittsburgh, PA. [Online]. Available: http://www.an-
soft.com

5IE3D Planar and 3D Electromagnetic Simulation and Optimiza-
tion Package, Zeland Software Inc., Fremont, CA. [Online]. Available:
http://www.zeland.com

6FEKO, FEldberechnung bei Körpern mit beliebiger Oberfläche, Field
Computations Involving Objects of Arbitrary Shape, EMSS—em Soft-
ware & Systems Ltd., Stellenbosch, South Africa. [Online]. Available:
http://www.emss.co.za

Fig. 3. Fully 3-D structure. An arbitrary curved surface is modeled using
currents with arbitrary orientation.

Fig. 4. Quasi-3-D structure composed of horizontal and strictly vertical
surfaces. These can cross interfaces between dielectric layers and all current
components are modeled.

MPIE formulation. For this specific geometry, we propose a hy-
brid dyadic-mixed-potential formulation in Section II.

B. Space-Domain Approach Versus SDA

For the planar structures of Fig. 1, Green’s functions are com-
puted for a limited number of combinations of -coordinates.
This becomes a problem when currents are distributed in a con-
tinuous manner over all -positions. A first engineering ap-
proach evaluates the integrals involving varying -variables
numerically in the space domain, interpolating from a set of
precalculated Green’s functions for a sufficient number of
combinations. This was done for a constant vertical current in
a single-layered medium with an EFIE formulation in [7], for
quasi-3-D structures in a single layered medium in [11], and for
a double-layered medium in [12], both, however, using a total
MPIE formulation. For full 3-D problems, this is apparently the
method used in IE3D and FEKO confirmed. Care has to be ex-
ercised with the continuity of the Green’s functions and their
derivatives as they cross dielectric interfaces [12], [14]. The in-
terpolation procedure has to be applied for the scalar potential
kernel and all components of the dyadic vector potential kernel.
This approach becomes computationally very expensive. For
quasi-3-D structures, the current flowing on a vertical surface
can be decomposed into vertical and horizontal parts such that
the -integrations can be done analytically. This was done for
strictly vertical currents in single-layered media in [8] and [9],
but the evaluation takes place in the space domain, while [10]
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realizes that a spectral-domain evaluation reduces the singular
behavior. More recently, [13] modeled vertical and horizontal
current components with a spectral-domain evaluation of
integrals for quasi-3-D structures in double-layered media, but
again, using a total MPIE formulation. No general expressions
for the integrals for multiple-layered media were obtained
[14]. In this study, we evaluate all integrals in closed form,
based on derivative relations and a factorization for Green’s
function in arbitrarily layered media. The technique is combined
with the hybrid field formulation to deal with the Green’s func-
tion singular behavior. The singularity of the dyadic -depen-
dent part is reduced by evaluating the closed-form formulas in
the spectral domain. In the space-domain MPIE part of the for-
mulation, derivatives are transferred to the basis and test func-
tions. The exact interleaving of closed-form spectral-domain
evaluation, numerical inverse Fourier transform, and space-do-
main MPIE technique depends on the directions of fields and
currents and is worked out in Section III.

II. HYBRID DYADIC-MIXED POTENTIAL FORMULATION

The field in an arbitrarily stratified medium is obtained by
performing a Fourier transform of the transverse spatial ( )
coordinates to the ( ) wavenumber domain. The spectral-
domain counterpart of a spatial function is written as . One
obtains an equivalent transmission line along the -direction for
the TE and TM parts of the field [4]. Each layer of the medium
corresponds to a section of the equivalent transmission-line
system of Appendix B, and is determined by a propagation con-
stant and characteristic admittance as
follows:

(1)

All Green’ functions can be expressed with the functions

(2)

where is the current or voltage at position in section
, is the unit current or voltage source at position in

section , and both systems are also indicated. In
the quasi-3-D structures, there are no currents inclined with re-
spect to the -plane. This allows to avoid the complications
of a fully 3-D formulation. Also, in Section IV, the part of
the reaction integrals will be done analytically. It is, therefore,
better to express vertical field and current relations in dyadic
form. For the horizontal currents, the MPIE formulation retains
its usual advantages. Thus, we arrive at

(3)

(4)

while the relations between transverse field and vertical currents
and vice versa are expressed in an intermediate fashion

(5)

(6)

Only lowest order Sommerfeld integrals are required and no
azimuth angular dependence is present. The only apparent
problem is that the function occurring in (4) has a , and
the ones in (5) and (6) have a spatial singular behavior,
as opposed to the basic singularities of (3). This singular
behavior can be reduced, however, by performing part of the
reaction integrals already in the spectral domain, prior to the
numerical inverse Fourier transform, as described in the next
section.

III. COMBINED SDA-SPATIAL-DOMAIN APPROACH FOR

EVALUATION OF THE REACTION INTEGRALS

The IE for the electric field is discretized using a MoM [6]
with the by now standard rooftop expansion functions [20]. The
elements of the MoM coupling matrix are obtained from the
reaction integrals [5]

(7)

where the integrals extend over the observation and source sur-
faces and , where and are nonvanishing. In evaluating
these integrals, the currents on the vertical surfaces are expanded
with rectangular rooftop functions that are directed strictly ver-
tical or horizontal, as depicted in Fig. 4, such that the -de-
pendent part can be performed in closed form. Below, we will
drop the normalization and and express with a mul-
tilayered Green’s function.

A. MPIE-Space-Domain Approach

The electromagnetic coupling between transverse
currents is done in the standard way [16]. Inserting the mixed
potential form of (3) into (7) gives

(8)

The charges and are obtained in partial integration pro-
cedures where one derivative of the Green’s function was trans-
ferred to the observation current and another to the source
current . As a result, both the scalar and vector potential
Green’s functions have a worst case behavior for
large in the spectral domain, and a corresponding (see Ap-
pendix C) singular behavior for small in the spa-
tial domain.
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Fig. 5. Combined SDA and spatial-domain approach for the evaluation of
the reaction integrals for two vertical currents. Closed-form integration in the
spectral domain facilitates the numerical inverse Fourier transform and reduces
the singularity in the spatial domain.

B. Dyadic SDA

To evaluate the reaction integral (7) for vertical currents, we
insert (4) into (7) and try to evaluate

(9)

but the numerical inverse Fourier transform would be difficult
since a asymptotic behavior in the spectral domain

confronts us. A corresponding spatial singularity
has to be integrated. We, therefore, bring the -dependent
part of the surface integrals “inside” of the inverse Fourier trans-
form

(10)

where are curves in the -plane. The -integrations
can be performed in closed form with the techniques given in
Section IV. The resulting formulas are evaluated in the spec-
tral domain. It will be demonstrated in Section IV-C that these
extra integrations improve the asymptotic spectral and spatial
singular behavior. For the above case, an improved
and behavior are obtained. The evaluation
of the reaction integrals is depicted in Fig. 5. No charges appear
in this part of the formulation.

C. Cross-Coupling Terms

For the evaluation of the electromagnetic coupling from a ver-
tical current to a horizontal current, we follow an intermediate

Fig. 6. Combined SDA and spatial-domain approach for the evaluation of the
reaction integrals for the coupling of a vertical current to a horizontal current.
Notice that only the current is required for the vertical current and only the
charge for the horizontal current.

way. Inserting (19) into the reaction integral (7)

(11)

allows to transfer one derivative to the observation current, and
perform one closed-form integration in the spectral domain

(12)

The procedure is visualized in Fig. 6. If the horizontal current
flows on a vertical sheet, an additional integration can be
moved “inside” of the inverse Fourier transform and, for this
case, the analytical integration will be given completely in (19)
of Section IV-C. The reciprocal coupling is dealt with in a sim-
ilar manner by inserting (6) into (7), and this gives

(13)

In both cross-coupling formulas, the problematic asymp-
totic/singular behavior is thus treated by combining the
techniques from the two previous cases.

IV. ANALYTICAL INTEGRATION

The analytical integrations occurring in (10), (12), and (13)
are based on a general factorization (Section IV-A) and general
derivative relations (Section IV-B) valid for Green’s functions
in arbitrarily multilayered media.
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Fig. 7. Factorization of the Green’s function into a transfer function and shift
functions.

A. Factorization of the Green’s Function

To increase the efficiency of the computation of a set of
Green’s functions , a factorized form has been
developed. We choose reference planes on the left-hand side
of the layers under consideration at the positions and , as
indicated in Fig. 7 (the right-hand side and can also
be used). An arbitrary Green’s function is written as a product
of a transfer function between the chosen reference

positions, and shift factors and for the
exact source and observation positions

(14)

The explicit expressions are given in Appendix B. Instead of
computing separately all possible combinations , we need
only compute the transfer and shift functions once, and then use
these values to compute all possible combinations. This is es-
pecially profitable for the numerical evaluation as a function of
the spectral wavenumber , where a large number of evalua-
tions can be required, but it is also used for extraction of the
surface wave and branch point singularities, and the asymptotic
behavior [21]. In case of the surface wave pole singularity, the
residue computation is performed for only one function. The
values of the residue coefficients for all other functions follow
from reciprocity and the use of the shift and transfer functions
evaluated for equal to the pole value.

B. Derivative Relations

The Green’s functions in a multilayered medium show trans-
lational invariance only in the transverse ( )-coordinates so
we can use . More general formulas have to be relied
on for the -coordinates. These follow immediately from the
explicit expressions for the factorized Green’s functions (14).
For derivatives involving the observation -coordinate, we see
from (27) and (28) that

(15)

(16)

which are the usual transmission-line equations (without con-
sidering the delta function contributions when ). For

Fig. 8. Analytical integration of the z; z -dependent part of the reaction
integrals.

derivatives to the source variable, we obtain from (29)–(32)
the reciprocal relations

(17)

(18)

where, instead of the current or voltage itself, the source type
changes. This set of relations is essential for easy manipulation
and computation of the closed-form integrals of Section IV-C.

C. Analytical Integration

The derivative relations (15)– (18) can now be used in a par-
tial integration procedure involving Green’s functions and stan-
dard rooftop functions. Together with the factorized form of
(14), this gives clear analytical formulas. For example, in Fig. 8,
we consider the electromagnetic coupling from a vertical cur-
rent to a horizontal current also flowing on a vertical surface.
Both currents are expanded using rooftop functions, but for the
horizontal current, the dependence is a constant function. The
result of the computation is

(19)

where the -functions appears if the basis functions in Fig. 8
overlap. It arises by taking into account the discontinuous
behavior of the voltages and currents on the transmission-line
system described in Appendix B at the source position or by
explicitly including -functions in (15)–(18). Notice that the
integration only affects the observation shift function, while
integration only affects the source shift function. These parts
can be recognized in (19) and Fig. 8. The analytical integrations
can change the observation and/or source type

of the expressions and/or can introduce factors
and . These factors do no introduce any extra singularities
in the spectral domain (as can be verified by expanding the
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Fig. 9. Microstrip rectangular spiral inductor with an air bridge that will be
modeled with a zero and finite thickness.

expressions in series for ), but do improve the
spectral decay since, for large spectral values, they behave as

(20)

Thus, the closed-form integrations always improve the asymp-
totic spectral behavior.

V. EXAMPLES

A. Microstrip Inductor With Air Bridge

In the first example, we investigate the influence of the finite
thickness of the upper piece of the air bridge of a microstrip rect-
angular spiral inductor. The structure is depicted in Fig. 9. The
feeding microstrip lines are characterized by m,

m,and . Thespacingbetween the turns of the spiral
is m. The thicknesses of the vertical studs and the
height of the air bridge are m, while the thick-
ness of the upper piece of the air bridge is compared for m
or m. The example was originally introduced in [22].
Measurementswereperformedonastructurewhere theairbridge
was actually a wire with circular cross section of diameter 317.5

m.AnIEanalysiswasdonein[7],wheretheverticalpiecesofthe
airbridgearemodeledwithconstantverticalcurrents,andthehor-
izontal piece is an infinitely thin flat strip. An improved analysis
is done in [11], where allcomponents of the current were modeled
using the common MPIE formulation and the finite thickness is
taken into account. We have taken the simulated results of [11]
as reference curves in the following graphs. Fig. 10 shows am-
plitude and phase of as we computed them in 145 frequency
points from 2.0 to 20.0 GHz for m. The slight shift that
occurs when the upper piece is modeled as a box is given in the
same format in Fig. 11.

B. Cavity-Backed Antenna With Superstrate

Fig. 12 depicts a cavity-backed patch antenna with a dielec-
tric superstrate. The dimensions of the patch are cm
and cm. The size of the cavity is cm,

cm, and a depth cm. The dielec-

Fig. 10. Amplitude and phase ofS in 145 points in the frequency range from
2.0 to 20.0 GHz. Thickness of the upper piece of the air bridge is t = 000:0�m
for our computed results.

tric overlay has thickness mm and or
. The inner conductor of the coaxial feed terminates

on the middle of the patch. In [23], the analysis was performed
with a magnetic current in the region between the patch and
infinite ground plane. A dyadic Green’s function for the mag-
netic current was used in the upper dielectric region and inside
the rectangular cavity. The feed was a delta gap voltage gen-
erator. To show the validity of our approach, we perform the
dual analysis by computing all electric currents. The bottom
of the cavity is our infinite ground plane, while the current on
the patch, cavity sidewalls, and upper ground plane is expanded
with rooftop functions. The upper ground plane is necessarily fi-
nite in our approach ( mm). Our excitation is
a current source connecting the patch to the surrounding ground
plane. Of course, the analysis of [23] is much more efficient for
this particular case, but is limited to strictly rectangular closed
cavities. Our computation can handle arbitrarily shaped cavities
with possible openings in the cavity walls. In Fig. 13, we repeat
some results of [23] for reference purposes. One clearly sees the
effect of the superstrate on the input impedance. We reproduce
these computations and compare them with the measured results
of [23] in Fig. 14. A slight shift in frequency can be observed.
This might be due to different feed models since a further in-
crease of the size of the ground plane or refinement of the mesh
gives no further significant improvement of the results.
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Fig. 11. Amplitude and phase ofS in 145 points in the frequency range from
2.0 to 20.0 GHz. Thickness of the upper piece of the air bridge is t = 312:5�m
for our computed results.

Fig. 12. Coaxially fed cavity-backed patch antenna with a dielectric overlay.

C. Packaged Monolithic Microwave Integrated Circuits
(MMICs)

The behavior of MMICs packaged in a metallic box, as
depicted in Fig. 15, can deviate from the original unpackaged
behavior due to box resonances and proximity effects of
the sidewalls. The sharp resonance effects can be combated
by introducing absorbing materials such as the lossy layer
attached to the cover of the box in Fig. 15. Nevertheless, there
usually remain frequency shifts and other perturbations of the
circuit response. For the circuit in Fig. 15, the shunt stub with

mm and mm originally has a stopband around
11 GHz, and this behavior is not altered much when the circuit
is positioned at mm and mm. The example

Fig. 13. Input impedance R + jX of the antenna of Fig. 12 with and without
dielectric overlay, as computed and measured by [23] (3.0–8.0 GHz).

Fig. 14. Input impedance R + jX of the antenna of Fig. 12 with an without
dielectric overlay computed in 81 frequency points for 3.0–8.0 GHz and
compared with the measurements of [23].

Fig. 15. Studying the effect of the metallic package and absorbing materials
on the circuit behavior of the MMIC.

is taken from [24]. The box has dimensions mm,
mm, and mm and covers the circuit on a

substrate of mm and . The
absorbing layer has mm and ,

. Fig. 16 compares the results of [24] with
our own computations for the amplitude of from 9.0 to
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Fig. 16. Amplitude of S for the boxed circuit of Fig. 15 as computed in 49
points in the frequency range of 9.0–12.0 GHz. The response is influenced by
the location y in the box.

12.0 GHz in 49 points. When the circuit is moved to the middle
of the box at mm, the excitation of a box resonance
around 10.8 GHz significantly alters the overall behavior, as
can be seen in Fig. 16. The results of [24] were computed with
a “boxed” Green’s function, where the effect of the sidewalls
is incorporated in the formulation. In our analysis, the current
on the vertical walls of the box was completely expanded using
rooftop functions, while the top cover is a part of the layer
structure.

D. Overview Computational Effort

Table I gives an overview of problem size, required computer
memory, and execution time. The data refer to computations
performed on an HP J6000 UNIX workstation with a 552-MHz
processor and 1-GB RAM memory. Dense meshing was typi-
cally imposed by geometrical features and then extended across
the entire structure to maintain a similar cell size everywhere.
The problem size is further subdivided into the number of
rooftops on horizontal and vertical surfaces and “cornered”
rooftops on connections. This relates directly to parts of the
computation time per frequency point. Matrix fill time is
separated into the spectral part plus numerical inverse Fourier
transform and the spatial part. The resulting linear system was
solved with an LU decomposition. Additional attention should
be spent on increasing efficiency: using discrete complex
images (DCIMs) and fast Hankel transform (FHT) techniques
for the numerical inverse Fourier transform and exploiting
symmetry to reduce the number of reaction integrals that has
to be evaluated.

VI. CONCLUSIONS

The electromagnetic field in an arbitrarily stratified medium
has been given in a hybrid dyadic–mixed potential form. The
formulation is particularly well suited to deal with quasi-3-D
structures in which currents flow on horizontal and strictly ver-
tical conducting surfaces. The formulation avoids typical prob-
lems that hamper total MPIE formulations such as the occur-
rence of higher order Sommerfeld integrals and an azimuth an-
gular dependence of the components of the dyadic vector poten-

tial. The reaction integrals were evaluated in a way that blends
the traditional spatial-domain approach and SDA. All integrals
involving , variables are done in closed form in the spectral
domain prior to the numerical inverse Fourier transform. This is
possible due to general derivative relations and a general factor-
ization valid for arbitrary Green’s functions. Numerical results
illustrate the capabilities of the developed software and the fact
that the proposed method can deal with almost all problems in
circuits and antennas that one first considers as fully 3-D.

APPENDIX A

The inverse Fourier transforms of and combinations like
, , and can be evaluated with Sommerfeld inte-

grals (see [15] for full details)

where , and the Bessel
function of the first kind and order n.

APPENDIX B

Fig. 17 depicts the equivalent transmission-line system for a
planar stratified medium. The unit voltage and current sources

, are located in layer at position . The
observation point is in layer at position . The characteristic
admittance of section is defined in (1). We define two sets
of impedances and reflection coefficients valid for -positions

. The first set , is computed starting
from the right-hand side. at the outermost right inter-
face 0 is known because of the unbounded medium or metallic
ground plane. Using

(22)

and continuity of the admittance over the interfaces ,
we can compute the value at all positions in the layer struc-
ture. The second set and is obtained in a similar
manner, but starts from the left-hand side from the known value
of at the outermost left interface, and uses continuity
at the interfaces and

(23)

The Green’s functions can now be expressed in factorized form,
as in (14), where the explicit expressions for , , and
are given only for the case when the reference interfaces are
located at and and the observation point is located left
of the source position . For this particular case, the transfer
functions are

(24)

(25)
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TABLE I
OVERVIEW OF COMPUTATIONAL EFFORT FOR EXAMPLES OF SECTION V

Fig. 17. Equivalent transmission-line system for a stratified medium. The unit sources are located at z in layer j, and the field is measured at position z in layer
i. Each section is determined by the propagation constant 
 and its characteristic admittance Y . This system has to be considered for both the TE and TM fields.

where is the length of section . Using a sim-
plified notation

(26)

the observation shift functions are

(27)

(28)

while the source shift functions are given in the fol-
lowing:

(29)

(30)

(31)

(32)

Similar expressions are valid when the reference interfaces
are located at and when the observation is at the
right-hand side of the source.

APPENDIX C

The following Fourier transform pairs give the correspon-
dence between the asymptotic behavior for large in the spec-
tral domain and the singular behavior for small transverse dis-
tances in the spatial domain. The distance is written
as as follows:

(33)
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(34)

(35)

(36)
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